\(\int \frac {a+b \log (c x^n)}{d+e x^2} \, dx\) [218]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 105 \[ \int \frac {a+b \log \left (c x^n\right )}{d+e x^2} \, dx=\frac {\arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d} \sqrt {e}}-\frac {i b n \operatorname {PolyLog}\left (2,-\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} \sqrt {e}}+\frac {i b n \operatorname {PolyLog}\left (2,\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} \sqrt {e}} \]

[Out]

arctan(x*e^(1/2)/d^(1/2))*(a+b*ln(c*x^n))/d^(1/2)/e^(1/2)-1/2*I*b*n*polylog(2,-I*x*e^(1/2)/d^(1/2))/d^(1/2)/e^
(1/2)+1/2*I*b*n*polylog(2,I*x*e^(1/2)/d^(1/2))/d^(1/2)/e^(1/2)

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {211, 2361, 12, 4940, 2438} \[ \int \frac {a+b \log \left (c x^n\right )}{d+e x^2} \, dx=\frac {\arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d} \sqrt {e}}-\frac {i b n \operatorname {PolyLog}\left (2,-\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} \sqrt {e}}+\frac {i b n \operatorname {PolyLog}\left (2,\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} \sqrt {e}} \]

[In]

Int[(a + b*Log[c*x^n])/(d + e*x^2),x]

[Out]

(ArcTan[(Sqrt[e]*x)/Sqrt[d]]*(a + b*Log[c*x^n]))/(Sqrt[d]*Sqrt[e]) - ((I/2)*b*n*PolyLog[2, ((-I)*Sqrt[e]*x)/Sq
rt[d]])/(Sqrt[d]*Sqrt[e]) + ((I/2)*b*n*PolyLog[2, (I*Sqrt[e]*x)/Sqrt[d]])/(Sqrt[d]*Sqrt[e])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2361

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> With[{u = IntHide[1/(d + e*x^2),
 x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[u/x, x], x]] /; FreeQ[{a, b, c, d, e, n}, x]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4940

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> Simp[a*Log[x], x] + (Dist[I*(b/2), Int[Log[1 - I*c*x
]/x, x], x] - Dist[I*(b/2), Int[Log[1 + I*c*x]/x, x], x]) /; FreeQ[{a, b, c}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d} \sqrt {e}}-(b n) \int \frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d} \sqrt {e} x} \, dx \\ & = \frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d} \sqrt {e}}-\frac {(b n) \int \frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{x} \, dx}{\sqrt {d} \sqrt {e}} \\ & = \frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d} \sqrt {e}}-\frac {(i b n) \int \frac {\log \left (1-\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{x} \, dx}{2 \sqrt {d} \sqrt {e}}+\frac {(i b n) \int \frac {\log \left (1+\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{x} \, dx}{2 \sqrt {d} \sqrt {e}} \\ & = \frac {\tan ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d}}\right ) \left (a+b \log \left (c x^n\right )\right )}{\sqrt {d} \sqrt {e}}-\frac {i b n \text {Li}_2\left (-\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} \sqrt {e}}+\frac {i b n \text {Li}_2\left (\frac {i \sqrt {e} x}{\sqrt {d}}\right )}{2 \sqrt {d} \sqrt {e}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.02 \[ \int \frac {a+b \log \left (c x^n\right )}{d+e x^2} \, dx=\frac {-\left (\left (a+b \log \left (c x^n\right )\right ) \left (\log \left (1+\frac {\sqrt {e} x}{\sqrt {-d}}\right )-\log \left (1+\frac {d \sqrt {e} x}{(-d)^{3/2}}\right )\right )\right )+b n \operatorname {PolyLog}\left (2,\frac {\sqrt {e} x}{\sqrt {-d}}\right )-b n \operatorname {PolyLog}\left (2,\frac {d \sqrt {e} x}{(-d)^{3/2}}\right )}{2 \sqrt {-d} \sqrt {e}} \]

[In]

Integrate[(a + b*Log[c*x^n])/(d + e*x^2),x]

[Out]

(-((a + b*Log[c*x^n])*(Log[1 + (Sqrt[e]*x)/Sqrt[-d]] - Log[1 + (d*Sqrt[e]*x)/(-d)^(3/2)])) + b*n*PolyLog[2, (S
qrt[e]*x)/Sqrt[-d]] - b*n*PolyLog[2, (d*Sqrt[e]*x)/(-d)^(3/2)])/(2*Sqrt[-d]*Sqrt[e])

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.40 (sec) , antiderivative size = 263, normalized size of antiderivative = 2.50

method result size
risch \(-\frac {b \arctan \left (\frac {x e}{\sqrt {d e}}\right ) n \ln \left (x \right )}{\sqrt {d e}}+\frac {b \arctan \left (\frac {x e}{\sqrt {d e}}\right ) \ln \left (x^{n}\right )}{\sqrt {d e}}+\frac {b n \ln \left (x \right ) \ln \left (\frac {-e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 \sqrt {-d e}}-\frac {b n \ln \left (x \right ) \ln \left (\frac {e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 \sqrt {-d e}}+\frac {b n \operatorname {dilog}\left (\frac {-e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 \sqrt {-d e}}-\frac {b n \operatorname {dilog}\left (\frac {e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 \sqrt {-d e}}+\frac {\left (-\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}-\frac {i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}}{2}+b \ln \left (c \right )+a \right ) \arctan \left (\frac {x e}{\sqrt {d e}}\right )}{\sqrt {d e}}\) \(263\)

[In]

int((a+b*ln(c*x^n))/(e*x^2+d),x,method=_RETURNVERBOSE)

[Out]

-b/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2))*n*ln(x)+b/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2))*ln(x^n)+1/2*b*n*ln(x)/(-d
*e)^(1/2)*ln((-e*x+(-d*e)^(1/2))/(-d*e)^(1/2))-1/2*b*n*ln(x)/(-d*e)^(1/2)*ln((e*x+(-d*e)^(1/2))/(-d*e)^(1/2))+
1/2*b*n/(-d*e)^(1/2)*dilog((-e*x+(-d*e)^(1/2))/(-d*e)^(1/2))-1/2*b*n/(-d*e)^(1/2)*dilog((e*x+(-d*e)^(1/2))/(-d
*e)^(1/2))+(-1/2*I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+1/2*I*b*Pi*csgn(I*c)*csgn(I*c*x^n)^2+1/2*I*b*Pi*cs
gn(I*x^n)*csgn(I*c*x^n)^2-1/2*I*b*Pi*csgn(I*c*x^n)^3+b*ln(c)+a)/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2))

Fricas [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{d+e x^2} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{e x^{2} + d} \,d x } \]

[In]

integrate((a+b*log(c*x^n))/(e*x^2+d),x, algorithm="fricas")

[Out]

integral((b*log(c*x^n) + a)/(e*x^2 + d), x)

Sympy [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{d+e x^2} \, dx=\int \frac {a + b \log {\left (c x^{n} \right )}}{d + e x^{2}}\, dx \]

[In]

integrate((a+b*ln(c*x**n))/(e*x**2+d),x)

[Out]

Integral((a + b*log(c*x**n))/(d + e*x**2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \log \left (c x^n\right )}{d+e x^2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a+b*log(c*x^n))/(e*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{d+e x^2} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{e x^{2} + d} \,d x } \]

[In]

integrate((a+b*log(c*x^n))/(e*x^2+d),x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)/(e*x^2 + d), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c x^n\right )}{d+e x^2} \, dx=\int \frac {a+b\,\ln \left (c\,x^n\right )}{e\,x^2+d} \,d x \]

[In]

int((a + b*log(c*x^n))/(d + e*x^2),x)

[Out]

int((a + b*log(c*x^n))/(d + e*x^2), x)